mirror of https://github.com/drowe67/phasenn.git
first pass at eband->{Am}, getting quite reasonable SD results and test plots for 10-14 length vectors
parent
628dca7638
commit
041bb29ec3
|
@ -0,0 +1,208 @@
|
|||
#!/usr/bin/python3
|
||||
# eband_train.py
|
||||
#
|
||||
# David Rowe Dec 2019
|
||||
#
|
||||
# Train a NN to model to transform rate K=14 LPCnetstyle eband vectors
|
||||
# to rate L {Am} samples. See if we can get better speech quality
|
||||
# using small dimension vectors that will be easier to quantise.
|
||||
|
||||
'''
|
||||
usage: ./src/c2sim ~/Downloads/train_8k.sw --modelout ~/phasenn/train_8k.model --bands ~/phasenn/train_8k.f32
|
||||
./eband_train.py train_8k.f32 train_8k.model --epochs 10
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import sys
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy import signal
|
||||
import codec2_model
|
||||
import argparse
|
||||
import os
|
||||
from keras.layers import Input, Dense, Concatenate
|
||||
from keras import models,layers
|
||||
from keras import initializers
|
||||
from keras import backend as K
|
||||
|
||||
# less verbose tensorflow ....
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
|
||||
# constants
|
||||
|
||||
width = 256
|
||||
nb_batch = 32
|
||||
newamp1_K = 20
|
||||
max_amp = 160
|
||||
nb_plots = 6
|
||||
N = 80
|
||||
|
||||
def list_str(values):
|
||||
return values.split(',')
|
||||
|
||||
parser = argparse.ArgumentParser(description='Train a NN to decode Codec 2 rate K -> rate L')
|
||||
parser.add_argument('featurefile', help='f32 file of newamp1 rate K vectors')
|
||||
parser.add_argument('modelfile', help='Codec 2 model records with rate L vectors')
|
||||
parser.add_argument('--frames', type=list_str, default="30,31,32,33,34,35", help='Frames to view')
|
||||
parser.add_argument('--epochs', type=int, default=10, help='Number of training epochs')
|
||||
parser.add_argument('--nb_samples', type=int, default=1000000, help='Number of frames to train on')
|
||||
args = parser.parse_args()
|
||||
assert nb_plots == len(args.frames)
|
||||
|
||||
# read in model file records
|
||||
Wo, L, A, phase, voiced = codec2_model.read(args.modelfile, args.nb_samples)
|
||||
nb_samples = Wo.size;
|
||||
nb_voiced = np.count_nonzero(voiced)
|
||||
print("nb_samples: %d voiced %d" % (nb_samples, nb_voiced))
|
||||
|
||||
# read in rate K vectors
|
||||
features = np.fromfile(args.featurefile, dtype='float32')
|
||||
nb_features = 1 + newamp1_K + newamp1_K + max_amp
|
||||
nb_samples1 = len(features)/nb_features
|
||||
print("nb_samples1: %f" % (nb_samples1))
|
||||
print( nb_samples == nb_samples1)
|
||||
assert nb_samples == nb_samples1
|
||||
features = np.reshape(features, (nb_samples, nb_features))
|
||||
print(features.shape)
|
||||
rateK = features[:,1:1+newamp1_K]
|
||||
print(rateK.shape)
|
||||
A_conventional = features[:,2*newamp1_K+1:]
|
||||
print(A_conventional.shape)
|
||||
|
||||
# find and subtract mean for each frame
|
||||
mean_amp = np.zeros(nb_samples)
|
||||
for i in range(nb_samples):
|
||||
mean_amp[i] = np.mean(np.log10(A[i,1:L[i]+1]))
|
||||
|
||||
# set up sparse amp output vectors
|
||||
amp_sparse = np.zeros((nb_samples, width))
|
||||
for i in range(nb_samples):
|
||||
for m in range(1,L[i]+1):
|
||||
bin = int(np.round(m*Wo[i]*width/np.pi)); bin = min(width-1, bin)
|
||||
amp_sparse[i,bin] = np.log10(A[i,m]) - mean_amp[i]
|
||||
|
||||
# our model
|
||||
model = models.Sequential()
|
||||
model.add(layers.Dense(2*newamp1_K, activation='relu', input_dim=newamp1_K))
|
||||
model.add(layers.Dense(2*width, activation='relu'))
|
||||
model.add(layers.Dense(width))
|
||||
model.summary()
|
||||
|
||||
# custom loss function - we only care about outputs at the non-zero
|
||||
# positions in the sparse y_true vector. To avoid driving the other
|
||||
# samples to 0 we use a sparse loss function. The normalisation term
|
||||
# accounts for the time varying number of non-zero samples per frame.
|
||||
def sparse_loss(y_true, y_pred):
|
||||
mask = K.cast( K.not_equal(y_true, 0), dtype='float32')
|
||||
n = K.sum(mask)
|
||||
return K.sum(K.square((y_pred - y_true)*mask))/n
|
||||
|
||||
# testing custom loss function
|
||||
y_true = Input(shape=(None,))
|
||||
y_pred = Input(shape=(None,))
|
||||
loss_func = K.Function([y_true, y_pred], [sparse_loss(y_true, y_pred)])
|
||||
assert loss_func([[[0,1,0]], [[2,2,2]]]) == np.array([1])
|
||||
assert loss_func([[[1,1,0]], [[3,2,2]]]) == np.array([2.5])
|
||||
assert loss_func([[[0,1,0]], [[0,2,0]]]) == np.array([1])
|
||||
|
||||
# fit the model
|
||||
from keras import optimizers
|
||||
sgd = optimizers.SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
|
||||
model.compile(loss=sparse_loss, optimizer=sgd)
|
||||
history = model.fit(rateK, amp_sparse, batch_size=nb_batch, epochs=args.epochs, validation_split=0.1)
|
||||
|
||||
# try model over training database
|
||||
amp_sparse_est = model.predict(rateK)
|
||||
|
||||
# extract amplitudes from sparse vector and estimate variance of
|
||||
# quantisation error (mean error squared between original and
|
||||
# quantised magnitudes, the spectral distortion)
|
||||
amp_est = np.zeros((nb_samples,width))
|
||||
error = np.zeros(nb_samples)
|
||||
errorc = np.zeros(nb_samples)
|
||||
e1 = 0; n = 0; ec1 = 0
|
||||
for i in range(nb_samples):
|
||||
e2 = 0; ec2 = 0
|
||||
for m in range(1,L[i]+1):
|
||||
bin = int(np.round(m*Wo[i]*width/np.pi)); bin = min(width-1, bin)
|
||||
amp_est[i,m] = amp_sparse_est[i,bin]
|
||||
e = (amp_sparse_est[i,bin] - amp_sparse[i,bin]) ** 2
|
||||
n+=1; e1 += e; e2 += e;
|
||||
ec = (np.log10(A_conventional[i,m]) - mean_amp[i] - amp_sparse[i,bin]) ** 2
|
||||
ec1 += ec; ec2 += ec
|
||||
error[i] = e2/L[i]
|
||||
errorc[i] = ec2/L[i]
|
||||
# mean of error squared is actually the variance
|
||||
print("var1: %3.2f var2: %3.2f varc: %3.2f (dB*dB)" % (100*e1/n,100*np.mean(error),100*ec1/n,))
|
||||
|
||||
# synthesise time domain signal
|
||||
def sample_time(r, A):
|
||||
s = np.zeros(2*N);
|
||||
for m in range(1,L[r]+1):
|
||||
s = s + A[m]*np.cos(m*Wo[r]*range(-N,N) + phase[r,m])
|
||||
return s
|
||||
|
||||
# plot results
|
||||
|
||||
frames = np.array(args.frames,dtype=int)
|
||||
nb_plots = frames.size
|
||||
nb_plotsy = np.floor(np.sqrt(nb_plots)); nb_plotsx=nb_plots/nb_plotsy;
|
||||
|
||||
plt.figure(1)
|
||||
plt.plot(history.history['loss'])
|
||||
plt.plot(history.history['val_loss'])
|
||||
plt.legend(['train', 'valid'], loc='upper right')
|
||||
plt.title('model loss')
|
||||
plt.xlabel('epoch')
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(2)
|
||||
plt.title('Amplitudes Spectra')
|
||||
for r in range(nb_plots):
|
||||
plt.subplot(nb_plotsy,nb_plotsx,r+1)
|
||||
f = int(frames[r]/4);
|
||||
plt.plot(np.log10(A[f,1:L[f]])-mean_amp[f],'g')
|
||||
plt.plot(0+amp_est[f,1:L[f]],'r')
|
||||
plt.plot(0+np.log10(A_conventional[f,1:L[f]])-mean_amp[f],'b')
|
||||
t = "frame %d" % (f)
|
||||
plt.title(t)
|
||||
print(error[f],errorc[f])
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(3)
|
||||
plt.title('Time Domain')
|
||||
for r in range(nb_plots):
|
||||
plt.subplot(nb_plotsy,nb_plotsx,r+1)
|
||||
f = int(frames[r]/4);
|
||||
s = sample_time(f, A[f,:])
|
||||
A_est = 10**(amp_est[f,:] + mean_amp[f])
|
||||
s_est = sample_time(f, A_est)
|
||||
plt.plot(range(-N,N),s,'g')
|
||||
plt.plot(range(-N,N),s_est,'r')
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(4)
|
||||
plt.title('Histogram of mean error squared per frame')
|
||||
plt.subplot(211)
|
||||
plt.hist(error,20, range=(0,0.15))
|
||||
plt.subplot(212)
|
||||
plt.hist(errorc,20, range=(0,0.15))
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(5)
|
||||
plt.title('error squared against frame energy')
|
||||
plt.subplot(211)
|
||||
plt.scatter(mean_amp, error)
|
||||
plt.subplot(212)
|
||||
plt.scatter(mean_amp, errorc)
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(6)
|
||||
plt.subplot(211)
|
||||
plt.plot(error[:300])
|
||||
plt.subplot(212)
|
||||
plt.plot(errorc[:300])
|
||||
plt.show(block=False)
|
||||
|
||||
print("Click on last figure to finish....")
|
||||
plt.waitforbuttonpress(0)
|
||||
plt.close()
|
Loading…
Reference in New Issue