MMDVM/IO.cpp

377 lines
9.5 KiB
C++

/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015 by Jim Mclaughlin KI6ZUM
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "IO.h"
// Generated using rcosdesign(0.2, 4, 10, 'sqrt') in MATLAB
static q15_t C4FSK_FILTER[] = {486, 39, -480, -1022, -1526, -1928, -2164, -2178, -1927, -1384, -548, 561, 1898, 3399, 4980, 6546, 7999, 9246, 10202, 10803, 11008, 10803, 10202, 9246,
7999, 6546, 4980, 3399, 1898, 561, -548, -1384, -1927, -2178, -2164, -1928, -1526, -1022, -480, 39, 486, 0};
const uint16_t C4FSK_FILTER_LEN = 42U;
// Generated using gaussfir(0.5, 4, 10) in MATLAB
static q15_t GMSK_FILTER[] = {1, 4, 15, 52, 151, 380, 832, 1579, 2599, 3710, 4594, 4933, 4594, 3710, 2599, 1579, 832, 380, 151, 52, 15, 4, 1, 0};
const uint16_t GMSK_FILTER_LEN = 24U;
const uint16_t DC_OFFSET = 2048U;
CIO::CIO() :
m_started(false),
m_rxBuffer(RX_RINGBUFFER_SIZE),
m_txBuffer(TX_RINGBUFFER_SIZE),
m_rssiBuffer(RX_RINGBUFFER_SIZE),
m_C4FSKFilter(),
m_GMSKFilter(),
m_C4FSKState(),
m_GMSKState(),
m_pttInvert(false),
m_rxLevel(128 * 128),
m_cwIdTXLevel(128 * 128),
m_dstarTXLevel(128 * 128),
m_dmrTXLevel(128 * 128),
m_ysfTXLevel(128 * 128),
m_p25TXLevel(128 * 128),
m_ledCount(0U),
m_ledValue(true),
m_detect(false),
m_adcOverflow(0U),
m_dacOverflow(0U),
m_count(0U),
m_watchdog(0U),
m_lockout(false)
{
::memset(m_C4FSKState, 0x00U, 70U * sizeof(q15_t));
::memset(m_GMSKState, 0x00U, 40U * sizeof(q15_t));
m_C4FSKFilter.numTaps = C4FSK_FILTER_LEN;
m_C4FSKFilter.pState = m_C4FSKState;
m_C4FSKFilter.pCoeffs = C4FSK_FILTER;
m_GMSKFilter.numTaps = GMSK_FILTER_LEN;
m_GMSKFilter.pState = m_GMSKState;
m_GMSKFilter.pCoeffs = GMSK_FILTER;
initInt();
}
void CIO::start()
{
if (m_started)
return;
startInt();
m_count = 0U;
m_started = true;
setMode();
}
void CIO::process()
{
m_ledCount++;
if (m_started) {
// Two seconds timeout
if (m_watchdog >= 96000U) {
if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF) {
if (m_modemState == STATE_DMR && m_tx)
dmrTX.setStart(false);
m_modemState = STATE_IDLE;
setMode();
}
m_watchdog = 0U;
}
if (m_ledCount >= 48000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
setLEDInt(m_ledValue);
}
} else {
if (m_ledCount >= 480000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
setLEDInt(m_ledValue);
}
return;
}
#if defined(USE_COS_AS_LOCKOUT)
m_lockout = getCOSInt();
#endif
// Switch off the transmitter if needed
if (m_txBuffer.getData() == 0U && m_tx) {
m_tx = false;
setPTTInt(m_pttInvert ? true : false);
}
if (m_rxBuffer.getData() >= RX_BLOCK_SIZE) {
q15_t samples[RX_BLOCK_SIZE + 1U];
uint8_t control[RX_BLOCK_SIZE + 1U];
uint16_t rssi[RX_BLOCK_SIZE + 1U];
uint8_t blockSize = RX_BLOCK_SIZE;
for (uint16_t i = 0U; i < RX_BLOCK_SIZE; i++) {
uint16_t sample;
m_rxBuffer.get(sample, control[i]);
m_rssiBuffer.get(rssi[i]);
// Detect ADC overflow
if (m_detect && (sample == 0U || sample == 4095U))
m_adcOverflow++;
q15_t res1 = q15_t(sample) - DC_OFFSET;
q31_t res2 = res1 * m_rxLevel;
samples[i] = q15_t(__SSAT((res2 >> 15), 16));
}
// Handle the case of the oscillator not being accurate enough
if (m_sampleCount > 0U) {
m_count += RX_BLOCK_SIZE;
if (m_count >= m_sampleCount) {
if (m_sampleInsert) {
blockSize++;
samples[RX_BLOCK_SIZE] = 0;
for (int8_t i = RX_BLOCK_SIZE - 1; i >= 0; i--)
control[i + 1] = control[i];
} else {
blockSize--;
for (uint8_t i = 0U; i < (RX_BLOCK_SIZE - 1U); i++)
control[i] = control[i + 1U];
}
m_count -= m_sampleCount;
}
}
if (m_lockout)
return;
if (m_modemState == STATE_IDLE) {
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize);
dstarRX.samples(GMSKVals, blockSize);
}
if (m_dmrEnable || m_ysfEnable || m_p25Enable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
if (m_dmrEnable) {
if (m_duplex)
dmrIdleRX.samples(C4FSKVals, blockSize);
else
dmrDMORX.samples(C4FSKVals, rssi, blockSize);
}
if (m_ysfEnable)
ysfRX.samples(C4FSKVals, blockSize);
if (m_p25Enable)
p25RX.samples(C4FSKVals, blockSize);
}
} else if (m_modemState == STATE_DSTAR) {
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize);
dstarRX.samples(GMSKVals, blockSize);
}
} else if (m_modemState == STATE_DMR) {
if (m_dmrEnable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
if (m_duplex) {
// If the transmitter isn't on, use the DMR idle RX to detect the wakeup CSBKs
if (m_tx)
dmrRX.samples(C4FSKVals, rssi, control, blockSize);
else
dmrIdleRX.samples(C4FSKVals, blockSize);
} else {
dmrDMORX.samples(C4FSKVals, rssi, blockSize);
}
}
} else if (m_modemState == STATE_YSF) {
if (m_ysfEnable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
ysfRX.samples(C4FSKVals, blockSize);
}
} else if (m_modemState == STATE_P25) {
if (m_p25Enable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
p25RX.samples(C4FSKVals, blockSize);
}
} else if (m_modemState == STATE_DSTARCAL) {
q15_t GMSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize);
calDStarRX.samples(GMSKVals, blockSize);
}
}
}
void CIO::write(MMDVM_STATE mode, q15_t* samples, uint16_t length, const uint8_t* control)
{
if (!m_started)
return;
if (m_lockout)
return;
// Switch the transmitter on if needed
if (!m_tx) {
m_tx = true;
setPTTInt(m_pttInvert ? false : true);
}
q15_t txLevel = 0;
switch (mode) {
case STATE_DSTAR:
txLevel = m_dstarTXLevel;
break;
case STATE_DMR:
txLevel = m_dmrTXLevel;
break;
case STATE_YSF:
txLevel = m_ysfTXLevel;
break;
case STATE_P25:
txLevel = m_p25TXLevel;
break;
default:
txLevel = m_cwIdTXLevel;
break;
}
for (uint16_t i = 0U; i < length; i++) {
q31_t res1 = samples[i] * txLevel;
q15_t res2 = q15_t(__SSAT((res1 >> 15), 16));
uint16_t res3 = uint16_t(res2 + DC_OFFSET);
// Detect DAC overflow
if (res3 > 4095U)
m_dacOverflow++;
if (control == NULL)
m_txBuffer.put(res3, MARK_NONE);
else
m_txBuffer.put(res3, control[i]);
}
}
uint16_t CIO::getSpace() const
{
return m_txBuffer.getSpace();
}
void CIO::setDecode(bool dcd)
{
if (dcd != m_dcd)
setCOSInt(dcd ? true : false);
m_dcd = dcd;
}
void CIO::setADCDetection(bool detect)
{
m_detect = detect;
}
void CIO::setMode()
{
#if defined(ARDUINO_MODE_PINS)
setDStarInt(m_modemState == STATE_DSTAR);
setDMRInt(m_modemState == STATE_DMR);
setYSFInt(m_modemState == STATE_YSF);
setP25Int(m_modemState == STATE_P25);
#endif
}
void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel)
{
m_pttInvert = pttInvert;
m_rxLevel = q15_t(rxLevel * 128);
m_cwIdTXLevel = q15_t(cwIdTXLevel * 128);
m_dstarTXLevel = q15_t(dstarTXLevel * 128);
m_dmrTXLevel = q15_t(dmrTXLevel * 128);
m_ysfTXLevel = q15_t(ysfTXLevel * 128);
m_p25TXLevel = q15_t(p25TXLevel * 128);
if (rxInvert)
m_rxLevel = -m_rxLevel;
if (txInvert) {
m_dstarTXLevel = -m_dstarTXLevel;
m_dmrTXLevel = -m_dmrTXLevel;
m_ysfTXLevel = -m_ysfTXLevel;
m_p25TXLevel = -m_p25TXLevel;
}
}
void CIO::getOverflow(bool& adcOverflow, bool& dacOverflow)
{
adcOverflow = m_adcOverflow > 0U;
dacOverflow = m_dacOverflow > 0U;
#if defined(WANT_DEBUG)
if (m_adcOverflow > 0U || m_dacOverflow > 0U)
DEBUG3("IO: adc/dac", m_adcOverflow, m_dacOverflow);
#endif
m_adcOverflow = 0U;
m_dacOverflow = 0U;
}
bool CIO::hasTXOverflow()
{
return m_txBuffer.hasOverflowed();
}
bool CIO::hasRXOverflow()
{
return m_rxBuffer.hasOverflowed();
}
void CIO::resetWatchdog()
{
m_watchdog = 0U;
}
bool CIO::hasLockout() const
{
return m_lockout;
}