wolfBoot/hal/stm32u5.c

529 lines
15 KiB
C

/* stm32u5.c
*
* Copyright (C) 2021 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <image.h>
#include <string.h>
#include "hal/stm32u5.h"
#include "hal.h"
static void RAMFUNCTION flash_set_waitstates(unsigned int waitstates)
{
uint32_t reg = FLASH_ACR;
if ((reg & FLASH_ACR_LATENCY_MASK) != waitstates)
FLASH_ACR = (reg & ~FLASH_ACR_LATENCY_MASK) | waitstates;
}
static RAMFUNCTION void flash_wait_complete(uint8_t bank)
{
while ((FLASH_NS_SR & (FLASH_SR_BSY | FLASH_SR_WDW)) != 0)
;
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
while ((FLASH_SR & (FLASH_SR_BSY | FLASH_SR_WDW)) != 0)
;
#endif
}
static void RAMFUNCTION flash_clear_errors(uint8_t bank)
{
FLASH_NS_SR |= (FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR |
FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR
#if !(defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
| FLASH_SR_OPTWERR
#endif
);
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
FLASH_SR |= (FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR |
FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR |
FLASH_SR_OPTWERR);
#endif
}
int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len)
{
int i = 0;
uint32_t *src, *dst;
uint32_t qword[4];
volatile uint32_t *sr, *cr;
flash_clear_errors(0);
src = (uint32_t*)data;
dst = (uint32_t*)address;
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
if ((((FLASH_OPTR & FLASH_OPTR_DBANK) == 0) && (address <= FLASH_TOP)) || (address < FLASH_BANK2_BASE)) {
cr = &FLASH_CR;
sr = &FLASH_SR;
/* Convert into secure address space */
dst = (uint32_t *)((address & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE);
}
else if (address >= (FLASH_BANK2_BASE) && (address <= (FLASH_TOP) )) {
cr = &FLASH_NS_CR;
sr = &FLASH_NS_SR;
}
else {
return 0; /* Address out of range */
}
#else
cr = &FLASH_NS_CR;
sr = &FLASH_NS_SR;
#endif
while (i < len) {
qword[0] = src[i >> 2];
qword[1] = src[(i >> 2) + 1];
qword[2] = src[(i >> 2) + 2];
qword[3] = src[(i >> 2) + 3];
*cr |= FLASH_CR_PG;
dst[i >> 2] = qword[0];
ISB();
dst[(i >> 2) + 1] = qword[1];
ISB();
dst[(i >> 2) + 2] = qword[2];
ISB();
dst[(i >> 2) + 3] = qword[3];
ISB();
flash_wait_complete(0);
if ((*sr & FLASH_SR_EOP) != 0)
*sr |= FLASH_SR_EOP;
*cr &= ~FLASH_CR_PG;
i += 16;
}
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
flash_wait_complete(0);
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
if ((FLASH_CR & FLASH_CR_LOCK) != 0) {
FLASH_KEYR = FLASH_KEY1;
DMB();
FLASH_KEYR = FLASH_KEY2;
DMB();
while ((FLASH_CR & FLASH_CR_LOCK) != 0)
;
}
#endif
if ((FLASH_NS_CR & FLASH_CR_LOCK) != 0) {
FLASH_NS_KEYR = FLASH_KEY1;
DMB();
FLASH_NS_KEYR = FLASH_KEY2;
DMB();
while ((FLASH_NS_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_lock(void)
{
flash_wait_complete(0);
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
if ((FLASH_CR & FLASH_CR_LOCK) == 0)
FLASH_CR |= FLASH_CR_LOCK;
#endif
if ((FLASH_NS_CR & FLASH_CR_LOCK) == 0)
FLASH_NS_CR |= FLASH_CR_LOCK;
}
void RAMFUNCTION hal_flash_opt_unlock(void)
{
flash_wait_complete(0);
if ((FLASH_NS_CR & FLASH_CR_OPTLOCK) != 0) {
FLASH_NS_OPTKEYR = FLASH_OPTKEY1;
DMB();
FLASH_NS_OPTKEYR = FLASH_OPTKEY2;
DMB();
while ((FLASH_NS_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_opt_lock(void)
{
FLASH_NS_CR |= FLASH_CR_OPTSTRT;
flash_wait_complete(0);
FLASH_NS_CR |= FLASH_CR_OBL_LAUNCH;
if ((FLASH_NS_CR & FLASH_CR_OPTLOCK) == 0)
FLASH_NS_CR |= FLASH_CR_OPTLOCK;
}
int RAMFUNCTION hal_flash_erase(uint32_t address, int len)
{
uint32_t end_address;
uint32_t p;
volatile uint32_t *cr = &FLASH_NS_CR;
flash_clear_errors(0);
if (len == 0)
return -1;
if (address < ARCH_FLASH_OFFSET)
return -1;
end_address = address + len - 1;
for (p = address; p < end_address; p += FLASH_PAGE_SIZE) {
uint32_t reg;
uint32_t base;
uint32_t bker = 0;
cr = &FLASH_NS_CR;
if ((((FLASH_OPTR & FLASH_OPTR_DBANK) == 0) && (p <= FLASH_TOP)) || (p < FLASH_BANK2_BASE)) {
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
cr = &FLASH_CR;
#endif
base = FLASHMEM_ADDRESS_SPACE;
}
else if (p >= (FLASH_BANK2_BASE) && (p <= (FLASH_TOP) )) {
bker = FLASH_CR_BKER;
base = FLASH_BANK2_BASE;
}
else {
*cr &= ~FLASH_CR_PER ;
return 0; /* Address out of range */
}
reg = *cr & (~((FLASH_CR_PNB_MASK << FLASH_CR_PNB_SHIFT) | FLASH_CR_BKER));
reg |= ((((p - base) >> 13) << FLASH_CR_PNB_SHIFT) | FLASH_CR_PER | bker );
*cr = reg;
DMB();
*cr |= FLASH_CR_STRT;
flash_wait_complete(0);
}
/* If the erase operation is completed, disable the associated bits */
*cr &= ~FLASH_CR_PER ;
return 0;
}
static void clock_pll_off(void)
{
uint32_t reg32, flash_waitstates ;
/* Select MSI as SYSCLK source. */
reg32 = RCC_CFGR1;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR1 = (reg32 | RCC_CFGR_SW_MSI);
DMB();
/* Wait for MSI clock to be selected. */
while ((RCC_CFGR1 & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_MSI) {};
flash_waitstates = 1;
flash_set_waitstates(flash_waitstates);
/* Turn off PLL */
RCC_CR &= ~RCC_CR_HSION;
RCC_CR &= ~RCC_CR_PLL1ON;
DMB();
}
/* This implementation will setup MSI 48 MHz as PLL Source Mux, PLLCLK as
* System Clock Source */
static void clock_pll_on(int powersave)
{
uint32_t reg32;
uint32_t pll1n, pll1m, pll1mboost, pll1q, pll1p, pll1r, pll1fracn, pll1rge;
uint32_t hpre, apb1pre, apb2pre, apb3pre, flash_waitstates;
/* Reset the RCC clock configuration to the default reset state ----------*/
/* Set MSION bit */
RCC_CR = RCC_CR_MSISON;
/* Reset CFGR register */
RCC_CFGR1 = 0U;
RCC_CFGR2 = 0U;
RCC_CFGR3 = 0U;
/* Reset HSEON, CSSON , HSION, PLLxON bits */
RCC_CR &= ~(RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLL1ON | RCC_CR_PLL2ON | RCC_CR_PLL3ON);
/* Reset PLLCFGR register */
RCC_PLL1CFGR = 0U;
/* Reset HSEBYP bit */
RCC_CR &= ~(RCC_CR_HSEBYP);
/* Disable all interrupts */
RCC_CIER = 0U;
FLASH_ACR|=FLASH_ACR_PRFTEN;
RCC_AHB3ENR |= RCC_AHB3ENR_PWREN;
RCC_AHB1ENR |= RCC_AHB1ENR_GTZC1EN;
RCC_AHB3ENR |= RCC_AHB3ENR_GTZC2EN;
PWR_UCPDR |= PWR_UCPDR_DBDIS;
PWR_SVMCR |= PWR_SVMCR_IOS2V;
PWR_VOSR &= ~( (PWR_VOSR_VOS_1 << PWR_VOSR_VOS_SHIFT) | PWR_VOSR_BOOSTEN );
PWR_VOSR|= ((PWR_VOSR_VOS_1<< PWR_VOSR_VOS_SHIFT) | PWR_VOSR_BOOSTEN);
/* Wait until VOSRDY is raised */
reg32 = PWR_VOSR;
while ((PWR_VOSR & PWR_VOSR_VOSRDY) == 0) {};
RCC_ICSCR1|= RCC_ICSCR1_MSIRGSEL;
reg32 = RCC_ICSCR1;
reg32 &= ~( (0xF << RCC_ICSCR1_MSIRANGE_SHIFT));
reg32|= (RCC_ICSCR1_MSIRG_0 << RCC_ICSCR1_MSIRANGE_SHIFT);
RCC_ICSCR1 = reg32;
reg32 = RCC_ICSCR1;
DMB();
/* Adjusts the Multiple Speed oscillator (MSI) calibration value */
reg32 = RCC_ICSCR2;
reg32 &= ~((0x1F << RCC_ICSCR2_MSITRIM0_SHIFT));
reg32 |= (RCC_ICSCR2_MSITRIM0_DEFAULT << RCC_ICSCR2_MSITRIM0_SHIFT);
RCC_ICSCR2 = reg32;
reg32 = RCC_ICSCR2;
DMB();
flash_waitstates = 1;
flash_set_waitstates(flash_waitstates);
/*----------------------------- HSI Configuration ------------------------*/
/* Enable the Internal High Speed oscillator (HSI) */
RCC_CR |= RCC_CR_HSION;
/* Wait till HSI is ready */
while ((RCC_CR & RCC_CR_HSIRDY) == 0) {};
/* Adjusts the Internal High Speed oscillator (HSI) calibration value */
reg32 = RCC_ICSCR3;
reg32 &= ~((1 << 20) | (1 << 19) | (1 << 18) | (1 << 17) | (1 << 16) );
reg32 |= (RCC_ICSCR3_HSITRIM_DEFAULT << RCC_ICSCR3_HSITRIM_SHIFT);
RCC_ICSCR3 = reg32;
reg32 = RCC_ICSCR3;
DMB();
/*-------------------------------- PLL Configuration ---------------------*/
/* Select clock parameters (CPU Speed = 160 MHz) */
pll1m = 3;
pll1mboost = RCC_PLL1CFGR_PLL1MBOOST_DIV4;
pll1n = 10;
pll1p = 2;
pll1q = 2;
pll1r = 1;
pll1fracn = 0;
pll1rge = RCC_PLL1VCIRANGE_1;
hpre = RCC_AHB_PRESCALER_DIV_NONE;
apb1pre = RCC_APB_PRESCALER_DIV_NONE;
apb2pre = RCC_APB_PRESCALER_DIV_NONE;
apb3pre = RCC_APB_PRESCALER_DIV_NONE;
/* Disable the main PLL */
RCC_CR &= ~RCC_CR_PLL1ON;
/* Wait till PLL is ready */
while ((RCC_CR & RCC_CR_PLL1RDY) != 0) {};
/* Enable PWR CLK */
RCC_AHB3ENR|= RCC_AHB3ENR_PWREN;
/*Disable EPOD to configure PLL1MBOOST*/
PWR_VOSR &= ~PWR_VOSR_BOOSTEN;
/* Configure the main PLL clock source, multiplication and division factors */
reg32 = RCC_PLL1CFGR ;
reg32 &= ~((1 << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (1 << 11) |
(1 << 10) | (1 << 9) | (1 << 8) | (1 << 1) | (1 << 0));
reg32 |= RCC_PLLCKSELR_PLLSRC_MSI;
reg32 |= ((pll1m-1) << RCC_PLL1CFGR_PLLM_SHIFT);
reg32 |= ((pll1mboost) << RCC_PLL1CFGR_PLL1MBOOST_SHIFT);
RCC_PLL1CFGR = reg32;
reg32 =0;
reg32 |= ((pll1n-1) << RCC_PLL1DIVR_PLLN_SHIFT);
reg32 |= ((pll1p-1) << RCC_PLL1DIVR_PLLP_SHIFT);
reg32 |= ((pll1q-1) << RCC_PLL1DIVR_PLLQ_SHIFT);
reg32 |= ((pll1r-1) << RCC_PLL1DIVR_PLLR_SHIFT);
RCC_PLL1DIVR = reg32;
DMB();
/* Disable PLL1FRACN */
RCC_PLL1CFGR&= ~RCC_PLL1CFGR_PLL1FRACEN;
/* Configure PLL PLL1FRACN */
reg32 = RCC_PLL1FRACR ;
reg32 &= ~((1 << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (1 << 11) |
(1 << 10) | (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |
(1 << 5) | (1 << 4) | (1 << 3));
reg32 |= ((pll1fracn) << RCC_PLL1FRACR_SHIFT);
RCC_PLL1FRACR = reg32;
/* Enable PLL1FRACN */
RCC_PLL1CFGR|= RCC_PLL1CFGR_PLL1FRACEN;
/* Select PLL1 input reference frequency range: VCI */
reg32 = RCC_PLL1CFGR ;
reg32 &= ~((1 << 3) | (1 << 2));
reg32 |= ((pll1rge) << RCC_PLL1CFGR_PLL1RGE_SHIFT);
RCC_PLL1CFGR = reg32;
/* Enable the EPOD to reach max frequency */
PWR_VOSR |= PWR_VOSR_BOOSTEN;
/* Disable PWR clk */
RCC_AHB3ENR&=~RCC_AHB3ENR_PWREN;
/* Enable PLL System Clock output */
RCC_PLL1CFGR|=RCC_PLL1CFGR_PLL1REN;
/* Enable the main PLL */
RCC_CR|=RCC_CR_PLL1ON;
/* Wait till PLL is ready */
while ((RCC_CR & RCC_CR_PLL1RDY) == 0) {};
/* Increasing the number of wait states because of higher CPU frequency */
flash_waitstates = 4;
flash_set_waitstates(flash_waitstates);
/* Enable PWR CLK */
RCC_AHB3ENR|= RCC_AHB3ENR_PWREN;
/* Wait till BOOST is ready */
while ((PWR_VOSR & PWR_VOSR_BOOSTRDY) == 0) {};
/*Disable PWR clk */
RCC_AHB3ENR&=~RCC_AHB3ENR_PWREN;
/* Select PLL as SYSCLK source. */
reg32 = RCC_CFGR1;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR1 = (reg32 | RCC_CFGR_SW_PLL);
DMB();
/* Wait for PLL clock to be selected. */
while ((RCC_CFGR1 & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_PLL) {};
/* HCLK Configuration */
reg32 = RCC_CFGR2 ;
reg32 &= ~((1 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
reg32 |= hpre;
RCC_CFGR2 = reg32;
DMB();
/* PRE1 and PRE2 conf */
reg32 = RCC_CFGR2 ;
reg32 &= ~((1 << 6) | (1 << 5) | (1 << 4));
reg32 |= ((apb1pre) << RCC_CFGR2_PPRE1_SHIFT) ;
reg32 &= ~((1 << 10) | (1 << 9) | (1 << 8));
reg32 |= ((apb2pre) << RCC_CFGR2_PPRE2_SHIFT) ;
RCC_CFGR2 = reg32;
DMB();
/* PRE3 conf */
reg32 = RCC_CFGR3;
reg32 &= ~((1 << 6) | (1 << 5) | (1 << 4));
reg32 |= ((apb3pre) << RCC_CFGR3_PPRE3_SHIFT) ;
RCC_CFGR3 = reg32;
DMB();
/* Disable PWR clk */
RCC_AHB3ENR&=~RCC_AHB3ENR_PWREN;
}
static void RAMFUNCTION stm32u5_reboot(void)
{
AIRCR = AIRCR_SYSRESETREQ | AIRCR_VKEY;
while(1)
;
}
void RAMFUNCTION hal_flash_dualbank_swap(void)
{
uint32_t cur_opts;
hal_flash_unlock();
hal_flash_opt_unlock();
cur_opts = (FLASH_OPTR & FLASH_OPTR_SWAP_BANK) >> 20;
if (cur_opts)
FLASH_OPTR &= (~FLASH_OPTR_SWAP_BANK);
else
FLASH_OPTR |= FLASH_OPTR_SWAP_BANK;
hal_flash_opt_lock();
hal_flash_lock();
stm32u5_reboot();
}
static void led_unsecure()
{
uint32_t pin;
/* Enable clock for User LED GPIOs */
RCC_AHB2ENR1_CLOCK_ER|= GPIOH_AHB2ENR1_CLOCK_ER;
/* Un-secure User LED GPIO pins */
GPIOH_SECCFGR&=~(1<<LED_USR_PIN);
GPIOH_SECCFGR&=~(1<<LED_BOOT_PIN);
}
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
static uint8_t bootloader_copy_mem[BOOTLOADER_SIZE];
static void RAMFUNCTION fork_bootloader(void)
{
uint8_t *data = (uint8_t *) FLASHMEM_ADDRESS_SPACE;
uint32_t dst = FLASH_BANK2_BASE;
uint32_t r = 0, w = 0;
int i;
/* Return if content already matches */
if (memcmp(data, (void *)FLASH_BANK2_BASE, BOOTLOADER_SIZE) == 0)
return;
/* Read the wolfBoot image in RAM */
memcpy(bootloader_copy_mem, data, BOOTLOADER_SIZE);
/* Mass-erase */
hal_flash_unlock();
hal_flash_erase(dst, BOOTLOADER_SIZE);
hal_flash_write(dst, bootloader_copy_mem, BOOTLOADER_SIZE);
hal_flash_lock();
}
#endif
void hal_init(void)
{
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
if ((FLASH_OPTR & (FLASH_OPTR_SWAP_BANK | FLASH_OPTR_DBANK)) == FLASH_OPTR_DBANK)
fork_bootloader();
#endif
clock_pll_on(0);
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
hal_tz_sau_init();
hal_gtzc_init();
#endif
}
void hal_prepare_boot(void)
{
clock_pll_off();
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
led_unsecure();
#endif
}